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Mathematics in Search of History

Donald T. Barry

The history of mathematics is used in a vari-
ety of ways to liven up a classroom and give
meaning to a lesson. We retell anecdotes,

require that students research the lives of mathe-
maticians, encourage students to study the attempts
to solve problems of historical interest, and suggest
that students discover links between the historical
development of science and the development of
mathematics. I worry, however, that we are primar-
ily treating the history of mathematics as a fixed
entity that consists solely of a set of facts, not as a
fluid field within which lively debate occurs and
emphases shift over time. 

To counter that tendency, I created a mathemati-
cal problem in the form of an ancient document.
The solution requires that a community of scholars,
namely, the students, work together to sort out
ambiguities and inconsistencies to arrive at an
interpretation of the problem with which the com-
munity as a whole is reasonably comfortable. I give
this problem to my Advanced Placement calculus
class with two major goals in mind:

• To give them an interesting mathematical chal-
lenge after the Advanced Placement examination 

• To simulate the process by which the history of
mathematics is actually developed

I was thrilled by the classroom discussions that
took place that year. The remainder of this article
presents the problem, as well as the path that the
class took as it struggled to make sense of the docu-
ment. I hope to make the case that this use of the
history of mathematics is worthwhile. 

THE PROBLEM
In Archaeology and Language: The Puzzle of Indo-
European Origins, Colin Renfrew (1987) argues that
the mother tongue of Indo-European languages
originated in agricultural communities that devel-
oped in central Anatolia around 8000 B.C.E. He
maintains that the spread of language and its dif-
ferentiation were concomitant with the spread of
agriculture, since families, not just agricultural
techniques, moved into virgin lands. 

As luck would have it, not far from the well-
known Neolithic village of Çatal Hüyük in south

central Turkey, near the village of Olmazköy, by the
banks of Imkânsiz dere, a shepherd recently discov-
ered a cave filled with ancient clay tablets. The
writing on the tablets is neither Hurrian, Hattic,
Phrygian, Minoan Linear A, nor any other known
ancient language. It may be the mother tongue of
all Indo-European languages.

Some of the tablets seem to contain mathematical
inscriptions. Shown in figure 1 is a facsimile of what
is, perhaps, the most interesting and exciting tablet.
It consists of three columns of seven lines of what
must be numerical information. Unfortunately, the
tablet is broken off at the bottom, and the other part
has not yet been recovered. The missing part may
still be found in the cave, but it is equally likely that
it is by now a bookend in some swank New York City
apartment. If this tablet is of the same general size
as the rest of the tablets, we have the top two-thirds
of it.
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Fig. 1
An ancient tablet
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Your task, should you choose to accept it, is to
decipher the tablet. Determine the numbers in the
columns and rows, and develop an interpretation of
the numerical information. On the basis of your
interpretation, determine the contents of the miss-
ing third of the tablet. 

MY STUDENTS’ RESPONSE 
Several issues arose simultaneously:

• What is the base? 
• Are the numbers written from left to right or

from right to left? 
• Do the gaps signify zeros or sloppiness? 

The entire class assumed that positional nota-
tion had been used; no one drew on a knowledge of
Roman numerals to suggest otherwise. As for the
base, the class decided with little debate that the
rightmost column consisted of digits representing
the numbers from 1 to 7. Since the first three dig-
its— , , and , as well as the next three digits,
formed triads generated by adding horizontal seg-
ments, it seemed obvious that 7, 8, and 9 were rep-
resented by , , and , respectively, whereas 10
and 11 were represented by and , respectively. 

But students were not sure whether the numbers
were written in base twelve or base thirteen. If all
the digits in this system were represented in the
tablet, the base was twelve. However, given the
grouping of digits in blocks of three, considerable
support developed for the idea that 12 would have
been represented by , leading to the conclusion
that thirteen was the base. But no one really want-
ed the base to be thirteen, since unlike base twelve,
it was an unfamiliar base that complicated the
expression of common fractions. 

The students did not know which base to use, so
they turned expectantly to me, but the “answer
man” was in the delightful position of being able to
shrug his shoulders and express sympathy with
their plight, but nothing more. I did point out that
if they were a community of archaeologists study-
ing a real tablet, either a consensus would emerge
after they had explored various hypotheses, or it
would not. I also reminded them of the principle
known as Occam’s razor, which states that the sim-
plest theory that fits the data is the one that ought
to be chosen. 

The students quickly shook off their intellectual
paralysis and chose twelve as the base, not as an
answer but as a point of departure, realizing that if
twelve did not lead to fruitful results, they would
have to abandon it. Similarly, they had no way of
knowing whether the numbers were written from
left to right or from right to left, so they had to
explore both possibilities. 

Figures 2 and 3 show their two-step translation
into base ten. As shown in figure 2, the students

first wrote the digits in our Hindu-Arabic notation.
They next converted the numbers to base ten. If the
numbers were written from left to right, the numbers
in the first line, for example, would be 10 • 12 + 3 =
123 and 1 • 144 + 8 • 12 + 4 = 244. Since they could
not agree about whether an interior space meant a
zero, they gave two values for the middle number
in line 7. The class obtained the results shown in
figure 3.

0 (10) 3 1 8 4 1
0 (11) 1 1 1 2
8 4 5 5 3
6 2 (10) 3 4
0 2 3 1 6 3 5
0 1 1 1 6
2 9 2 1 3 7

Fig. 2
The students converted the numerals into a

place-value system.

123 244 1
132 or 11 157 2

1200 or 100 780 or 65 3
888 or 74 1476 or 123 4

27 219 5
12 or 1 156 or 13 6

398 147 or 15 7

Fig. 3
The base-twelve numerals in figure 2 converted

into our base-ten system

An initial burst of excitement occurred when
someone realized that 1200/780 = 100/65 and
888/1476 = 74/123, but it vanished when we real-
ized that the result arose from nothing more than
the cancellation of bases. Then a student noticed
that the difference between some entries in the first
and second columns were perfect squares, that is,
244 – 123 = 121, 157 – 132 = 25, 123 – 74 = 49, and
156 – 12 = 144. But, unfortunately, 219 – 27 = 192,
not 196, and the entries in rows 3 and 7 came
nowhere near such a result. 

However, the notion that some differences were
perfect squares lent great support to the belief that
132 was the correct reading for line 2, that 74 and
123 were the correct readings for line 4, and that 12
and 156 were the correct readings for line 6. On
that basis, lines 3, 5, and 7 contained mistakes.
One student then concluded that the tablet was
obviously the work of a student, not a teacher, so
for a brief period we discussed, in general terms,
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the authorship and purpose of the tablet. The stu-
dents were disheartened by the likelihood that
lines 3, 5, and 7 contained mistakes, but I did point
out that viable explanations of mistakes can be
extremely useful in establishing the validity of an
interpretation of an ancient document. This idea
was a new one to them but one that they quickly
valued in this context. 

Then a truly provocative question emerged—in
looking for perfect squares, are we imposing a pat-
tern on the tablet that is not, in fact, there? In
other words, are we labeling as mistakes those
entries that are correct if the tablet is properly
interpreted? We never pursued these questions in
detail because the class turned impatiently to an
exploration of a right-to-left reading, leaving me
with lots to say and no audience. 

Writing the digits from right to left gave the
results shown in figure 4. Converting to base ten
gave figure 5.

Given the great number of differences yielding per-
fect squares, the class quickly abandoned the left-
to-right hypothesis and eliminated any alternative
readings in columns 1 and 2 that did not yield a
perfect-square difference. Thus, because “there’s
more stuff going on with the right-to-left hypothe-
sis,” they chose to work with the numbers shown in
figure 6.

3 (10) 0 4 8 1 1
0 (11) 0 1 1 1 2

4 8 5 5 3
2 6 3 (10) 4

3 2 0 3 6 1 5
1 0 1 1 6

2 9 2 3 1 7

Fig. 4
The numbers in figure 2, using a right-to-left

numeration system

552 673 1
132 157 2
56 65 3
30 46 4

456 505 5
12 13 6

398 433 7

Fig. 6
The numbers that the students finally

chose for the tablet

Suddenly, insights started popping up all over
the room. We were already primed to look at differ-
ences, so students quickly saw the following:

673 – 552 = 121
157 – 132 = 125
165 – 156 = 119
146 – 130 = 116
505 – 456 = 149
113 –  12 = 111

552 or 46 673 1
132 or 11 157 2

56 65 3
30 46 4

456 or 38 505 5
12 or 1 13 6

398 433 or 37 7

Fig. 5
The numbers in figure 4 converted into base ten

Only line 7 was then problematic, since 433 – 398 =
35, not 36. Was 433 a mistake, was 398 a mistake,
or were they both in error? One student argued
that the writer meant to write , which is 434,
not , which is 433, because 434 – 398 = 36.
This argument quickly gained adherents because it
explained the error as a simple, careless mistake,
dropping the middle bar, but then someone noticed
that all elements in the left-hand column were
even, whereas all but the number 46 in the middle
column were odd. That result suggested that the
error might be with , not with . 

One student said that if the author of the tablet
had written = 2 • 144 + 8 • 12 = 384 instead
of = 2 • 144 + 9 • 12 + 2 = 398, then the
difference, 433 – 384 = 49, would have been a per-
fect square. Another noted that if the author had
written = 2 • 144 + 10 • 12 = 408, then the dif-
ference, 433 – 408 = 25, would also have been a per-
fect square. But these errors were more difficult to
explain than erroneously writing in place of ;
so at that point, the class was very uncertain about
the proper entries for line 7. The fact that 46 was
the only even number in the second column bothered
them, so they turned to line 4 and quickly discov-
ered that if the author had written = 2 • 12 +
10 = 34 instead of = 3 • 12 + 10 = 46, we could
also obtain a perfect square as a difference, namely,
34 – 30 = 4. But since 4 is not odd, this result was
not consistent with other patterns.

We never did get around to considering how 46
could be turned into an odd number n such that 
n – 30 gives a perfect square, because John Maglio,
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a quiet but thoughtful observer of our discussions,
suddenly dispelled all doubts with two brilliant
insights. First he noted that if we adopted 34 for
line 4 and 408 for line 7, the sum of the first two
entries in each line, in addition to the difference,
was a perfect square in all cases:

673 + 552 = 1225
157 + 132 = 1289
165 + 156 = 1121
134 + 130 = 1164
505 + 456 = 1961
113 + 112 = 1125
433 + 408 = 1841

The class grew deliciously quiet for a second, and
then everyone started talking at once. They really
liked this idea and concluded that it was important
enough that it should supersede the odd-even pat-
tern. But John gained even greater support for his
reading of the tablet when he explained that with
34 and 408, the entries in the tablet formed legs and
hypotenuses of right triangles. In line 6, we have
the entries for a 5-12-13 right triangle. By using 34
in line 4, we have an 8-15-17 right triangle. Figure
7 shows the Pythagorean triples that John found.

come up with a viable, corrected set of entries for
the table—ended its analysis on a high note. My
students thought that they had arrived at a plausi-
ble explanation of why 46 appeared instead of 34,
and they were convinced that not all entries in the
next-to-last column had to be odd. They were not
comfortable with their explanation of how 398 came
to be written instead of 408, but they strongly
believed that 408 and 433 were correct. Unfortu-
nately, we did not have time to study the tablet fur-
ther and could not consider whether the tablet was
a random or ordered collection of Pythagorean
triples. Nor did we have time to determine the
entries in the missing bottom third of the tablet.
We leave that crucial task to the reader and to
other classroom communities of scholars.

In thinking about the path taken by this class, I
was struck by how closely it resembled the discov-
ery of the meaning of Plimpton 322, a Babylonian
tablet dating to around 1800 B.C.E. Unfortunately,
Plimpton 322 is usually presented as a sequential
arrangement of fifteen Pythagorean triples, not as
a document whose difficulties and ambiguities led
scholars through a maze of conjectures until the
differing interpretations of Neugebauer (1957) and
Bruins (1949, 1957) were reached. In developing
their interpretations, Neugebauer and Bruins used
mathematics to construct the history of Babylonian
mathematics. 

Similarly, in using their mathematical knowl-
edge to create an interpretation of a tablet, my stu-
dents are writing or constructing history instead of
just talking about it. I hope that the three days that
we spent on this tablet revealed to them the kinds
of thinking, swashbuckling explorations, and com-
munity effort that are involved in developing the
history of mathematics. 
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385 552 673 1
85 132 157 2
33 56 65 3
16 30 34 4

217 456 505 5
5 12 13 6

145 408 433 7

Fig. 7
John’s Pythagorean triples

John’s discoveries came on the last day of class.
This community of scholars—believing that it had
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